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a b s t r a c t

In this paper, we investigate the impact of the presence of interfering radar on the target

direction of arrival (DOA) estimation performed by the reference radar. The analyzed

estimators are the pseudo-monopulse and the maximum likelihood techniques. The

importance of the use of codes in multi-user radar system is highlighted in a simple

scenario of two radars by calculating the root-mean square error of the estimators in

different operational conditions and comparing them with the Cramér-Rao lower bounds.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

For many years, conventional radars transmitted,
received, and processed the same waveform on every
pulse or burst within a coherent processing interval,
independently of the environment. In the 1970s, adaptive
processing began to be developed. For the first time, the
processing of received signals changed depending on the
environment (noise, clutter, and interferences). Radars
began to be more flexible on receive.

Now, modern radar systems have considerable flex-
ibility in their modes of operation, both on receive and
ll rights reserved.
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transmit. In particular, it is possible to modify the
waveform on a pulse-to-pulse basis, and electronically
steered phased arrays can quickly point the radar beam in
any feasible direction. Such flexibility calls for new
methods of designing and scheduling the waveforms to
optimize the radar performance. Then, an agile and
diverse waveform radar system should be able to change
on the fly the transmitted waveform based on the
information estimated or a priori known on the environ-
ment, on the targets and the jammers [1].

Moreover, in a radar network each sensor should also
be able to operate and perform its task without negatively
interfering with the other sensors and, possibly, to
improve the performance of the whole network. Then,
the waveforms used by the radars in a complex network
should be designed and changed on the fly, based on the
clutter, target and interference echoes3; they should
guarantee good target detection and parameter estimation
3 The choice of the transmitted waveform depends not only on the

desired delay and Doppler resolution, but also on where the clutter or

competing targets are located in the delay-Doppler plane [5].
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in different scenarios and should allow an optimal access
to the same transmit channel.

To perform good target detection and estimation,
frequency hop pulse train signals are often used in high
resolution radar systems. These signals are characterized
by an auto-ambiguity function (AAF) that exhibits a
narrow thumb tack shape with low sidelobes. In contrast,
in application like multi-access communications, atten-
tion is paid in designing a sequence of frequency-hopped
coded waveforms with small cross-correlation functions.
In multi-user radar system scenarios both objectives are
desirable. Unfortunately, there is a tradeoff between these
objectives. Frequency hop pulse trains based on Costas
codes, for instance, are known to have almost ideal AAF
but not very good cross-ambiguity properties [2]. On the
contrary, frequency-coded signals based on linear con-
gruences [3] have ideal cross- but unattractive auto-
ambiguity properties. Some attempt to design multiple
access frequency hop codes with good cross-ambiguity
function (CAF) has been done, for instance, in [4] where
the frequency hop patterns were constructed upon an
extension of the theory of quadratic congruences.

The scenario analyzed in this paper is composed of two
radars transmitting in the same band, which can illumi-
nate the same area looking for the same target; they can
use either the same or different codes. We rewrite the
observed signal as a function of cross- and auto-ambiguity
function values and target parameters, and we investigate
the impact of the presence of the transmitted signal of the
second radar (the interfering radar) on the first one (the
reference radar) in the estimation of the target direction of
arrival (DOA). We analyzed two DOA estimators, the
pseudo-monopulse (PM) and the maximum likelihood
(ML) estimator and we compared their performances with
Fig. 1. Radar s
the Cramèr-Rao lower bounds (CRLB). We focused our
attention only on the influence of the interfering radar on
the DOA estimation, so in our scenario we did not
simulate jammers or correlated clutter.

The paper is organized as follows. In Section 2, the
received signal model is explained and the PM and the ML
techniques for DOA estimation are summarized. In Section
3, the results of the analysis are described. In Section 4,
the CRLB for the problem at hand is derived and compared
with the root-mean square error (RMSE) of the PM and ML
estimators. In Section 5, some conclusions on the use of
codes are drawn.

2. Problem statement

The scenario is pictorially drawn in Fig. 1. Two radars
scan the same area transmitting frequency-coded bursts
of pulses and listening to the echo of a possible target. The
complex envelope of the transmitted unitary power signal
is given by

uðtÞ ¼
1ffiffiffiffiffiffiffiffiffi
Mtc

p
XM
m¼1

umðt � ðm� 1ÞtcÞ, (1)

where

umðtÞ ¼
expðj2pf mtÞ 0ptptc;

0 elsewhere;

(
(2)

M is the number of subpulses for each transmitted pulse
of time duration Ti, tc ¼ Ti/M is the duration of each
subpulse and {fm}m ¼ 1

M is the sequence of frequencies
related to the code used by the radar. For Costas arrays, for
instance, fm ¼ dm/tc, where dm belongs to the sequence
dM ¼ {d0,d1,y,dm,y,dM�1}, which is a permutation of the
cenario.



ARTICLE IN PRESS

LPF

LPF

A/D

A/D

CorrelatorLO

IF
signal

Trasmitted signal
�/2

Fig. 2. Receiver scheme.

M. Greco et al. / Signal Processing 89 (2009) 355–364 357
integer numbers JM ¼ {0,1,y,M�1}. The choice of
{fm}m ¼ 1

M , characterizing the frequency code is critical
and of paramount importance in defining the properties of
the auto- and cross-ambiguity functions of the trans-
mitted signal. A detailed description of this topic can be
found in [5].

As known, the AAF represents the time response of a
filter matched to a given finite energy signal when the
signal is received with a delay t and a Doppler shift n
relative to the nominal zeros values expected by the filter
[5]. Then, the AAF definition is

jAðt; nÞj ¼
Z þ1
�1

uðtÞu�ðt þ tÞ expðj2pntÞdt

����
����, (3)

where u(t) is the complex envelope of the signal. The CAF
between two signals u1(t) and u2(t) is similarly defined as4

jCðt; nÞj ¼
Z þ1
�1

u1ðtÞu
�
2ðt þ tÞ expðj2pntÞdt

����
����. (4)

2.1. Signal model

In the reference radar, the received signal is first down-
shifted to an intermediate frequency IF and amplified. The
IF signal is then processed as in the scheme of Fig. 2,
where LO is a local oscillator tuned on the IF frequency,
LPF is a low pass filter and A/D is an analog-to-digital
device.

Before the digitalization, the inphase (I) and (Q)
quadrature components of the target signal are:

xIðtÞ ¼ a cos 2pdðtÞ

tc
t þ 2pf Dt �j

� �
, (5)

xQ ðtÞ ¼ a sin 2pdðtÞ

tc
t þ 2pf Dt �j

� �
, (6)

where a exp(jj) is the complex amplitude of the target
that depends on the radar-cross section (RCS) and on
the antenna gain, fD is the Doppler frequency, and
d(t) ¼

P
m ¼ 0

M�1dm � rect((t�mtc/2)tc) is the frequency code.
After the digitalization at a sampling frequency fc, the

complex envelope of the received target signal is given by

xðn=f cÞ ¼ aejj exp 2pdðn=f cÞ

tcf c
nþ 2p f D

f c
n

� �
. (7)

In the correlator of Fig. 2, the sequence of x(n/fc) is
correlated with the sequence of samples of the trans-
mitted signal. Then the output signal is given by5

x ¼ aejj
XNS�1

n¼0

uðn=f cÞx
�ðn=f cÞ ¼ aejjA. (8)

It is easy to compare the term A in Eq. (8) with Eqs. (3)
and (4). If NS is large we can consider the sum as a good
approximation of the integral. Moreover, if the received
signal x(n/fc) is a delayed and frequency shifted copy of the
4 The calculation of Eqs. (4) and (5) is not always easy. For some

frequency code it is useful to resort to the placement and difference

matrices, as explained in [3,14].
5 We did not use any window in the calculation of Eq. (8).
transmitted signal u(n/fc), we can state that A is the value
of the complex AAF of the signal for some delay t and
Doppler target shift fD; then A ¼ A(t,fD). This is the case of
the signal backscattered by a target illuminated by the
reference radar. If, on the contrary, the signal received by
the reference radar is the signal transmitted by the
interfering radar, A is the value of the complex CAF; that
is A ¼ CðtR; f DR

Þ. If both signals are present, the received
signal is given by

y ¼ aejjAðt; f DÞ þ bejyCðtR; f DR
Þ þ d, (9)

where bejy is the complex amplitude of the signal relating
to the second radar and d is the unavoidable contribution
of the disturbance (thermal noise plus clutter).

2.2. Pseudo-monopulse estimator

In the analyzed scenario the reference radar is
supposed to estimate the DOA of the target by using a
pseudo-monopulse technique or the maximum likelihood
estimator [6].

In a typical phased array radar, a single beam is formed
on transmission and two or more beams are formed on
reception. We assume here that the system is a linear
array radar that estimates the target DOA by using the
sum channel

P
on transmission and two matched

channels, the sum
P

and the difference D on reception.
The two channels, or antenna patterns, are defined as the
complex amplitude profiles versus target azimuth angle
yT. The sum channel pattern is denoted by fP(y) and the
difference pattern by fD(y); these patterns are chosen here
as in [6], the �3 dB beamwidth is yB ¼ 31. The PM
technique used here is very similar to the classical
monopulse method, based on the ratio of the D and

P
channel outputs yD and yP. It uses N pulses transmitted by
the radar in the time-on-target (ToT), while the antenna
beams are electronically or mechanically steered with
constant angular velocity oR rad/s. The number N of
pulses between the one-way �3 dB points is given by
N ¼ yB/(oRT), where T ¼ 1/PRF is the radar pulse repeti-
tion time and PRF is the corresponding pulse repetition
frequency. The antenna introduces an amplitude modula-
tion on the target signal, in both the channels, that
depends on the target azimuth position and on the
instantaneous boresight of the array.

Based on Eq. (9), it is possible to write the expression of
the signal received on the sum and on the difference
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channels. Let us suppose that the Doppler frequencies of
the target and of the interference radar are the same with
respect to the reference radar. In this case, the reference
radar cannot distinguish between the two signals by
means of Doppler processing. Without lack of generality,
we assume that both Doppler frequencies are null; then
the received signals are given by

ySðnÞ ¼ aA f 2
SðyT;nÞ þ bC fSðyI;nÞ þ dSðnÞ, (10a)

yDðnÞ ¼ aA fSðyT;nÞfDðyT;nÞ þ bC fDðyI;nÞ þ dDðnÞ, (10b)

where n ¼ 0,1,y,N�1. With respect to Eq. (9), the
dependence of the complex amplitudes of target and
interfering signal on the antenna patterns has been
explicitly indicated. The first term in yP and yD is
due to the target signal; it depends on the target
DOA yT through fS

2 (yT) in sum channel and through
fS(yT)fD(yT) in the difference channel. This is due to the
two-way antenna gain. The second term is due to the
signal transmitted by the second radar which has a DOA yI

and it depends on the one-way gain of the antenna
pattern (fS(yI) and fD(yI)). dS and dD are the noises on the
two channels.

The signal processor forms the monopulse ratio
defined by r(n) ¼ Re{yD(n)/yS(n)} for each pulse where
Re{} denotes the real part. In absence of disturbance and
in the presence of only one target, the monopulse ratio
reduces to r(n) ¼ Re{fD(yT,n)/fS(yT,n)} from which the
angular location of the target for each pulse can be
determined. Finally, we obtain ŷTG ¼

PN�1
n¼0 ŷ

ðnÞ

TG=N, where
ŷ
ðnÞ

TG is the target DOA estimate for each pulse.
We treat the situation in which the source can be

considered static with respect to the radar during the ToT,
that is, during the recording of the N pulses. In this case,
due to the scanning movement of the antenna only, the
proposed estimator is biased and the bias can be
calculated. It is easy to verify that b ¼ EfŷTG � yTGg ¼

ðN � 1ÞyB=ð2NÞ then a DOA unbiased estimator is ŷTG ¼PN�1
n¼0 ŷ

ðnÞ

TG=N � b [6].
2.3. Maximum likelihood estimator

If we rewrite Eq. (10) in vector notation, the data model
is given by y ¼ aTg(yT)+aIf(yI)+d, where aT ¼ aA, and
aI ¼ bC, g(yT) ¼ [gS

TgD
T]T is the 2N�1 steering vector of

the target, [gP]n ¼ fS
2 (yT,n) and [gD]n ¼ fS(yT,n)fD(yT,n).

f(yT) ¼ [fS
T fD

T]T is the steering vector of the interference,
with [fS]n ¼ fS(yT,n) and [fL]n ¼ fD(yT,n). The 2N�1 dis-
turbance vector d is given by d ¼ [dS

T dD
T]T. The ML

estimator of yT,6 when the observed vector does not
contain the interference and the vector d is modeled
as a complex Gaussian vector with a covariance matrix M,
6 As shown in [6], Eq. (11) represents the ML estimator of yT when

the amplitude aT is modeled as a deterministic unknown value. When aT

is a random variable, the ML estimator has not a closed form. We adopt

here the ML estimator for deterministic aT even if in our data model the

complex amplitude is random; with an abuse of terminology we

continue to refer to (11) as the ML estimator.
is given by

ŷML ¼ argmax
y

jyHM�1gðyÞj2

gHðyÞM�1gðyÞ
. (11)

In the next paragraph we investigate the impact of the
presence of the interfering radar on the DOA RMSE when
the estimation is performed by the PM and the ML
techniques.
3. Simulation results

To evaluate the impact of the presence of the interfer-
ing radar, the RMSE, the variance and the bias of the DOA
estimator has been derived by running 104 Monte Carlo
simulations. The disturbance is modeled as a complex
white Gaussian process, in short notation d�CN(0,sd

2I),
where I the 2N-dimensional identity matrix, the target
and interference signal amplitudes aT and aI are modeled
first as: (i) complex Gaussian independent random
variables, in short aT�CN(0,sT

2|A|2) and aI�CN(0,sI
2|C|2);

and then as: (ii) deterministic unknown parameters. In
the first case, the signal-to-noise (SNR) power ratio is
defined as SNR ¼ |A|2 �sT

2/sd
2 and the signal-to-interfer-

ence ratio as SIR ¼ sT
2/sI

2; in the second case, SNR ¼
|aT|2 � /sd

2 and SIR ¼ |aT/aI|
2.

The results of our analysis are shown in Figs. 3–7 for
the PM estimator and in Figs. 8–14 for the ML estimator.
We set SNR ¼ 20 dB,7 SIR ¼ 0 dB and N ¼ 16; the target
DOA has been set equal to 1.51 (yT ¼ 1.51). We investigated
also other target DOA positions in the main beam of the
antenna. The behavior of the estimators is similar, and
then we show here the results for one position only.

Due to the high value of SNR, the performance of the
PM and ML estimators are mainly affected by the presence
of the interfering radar; they are the functions of the ratio
|C/A|. The value of C and A depends on the code used by
both radars and on the synchronization between transmit
and receive of the reference radar and between reference
and interfering radar.

If the reference radar is synchronized in reception and
transmission and the receiver is tuned on the Doppler of
the target, t ¼ 0 and fD ¼ 0, then A is the energy of the
transmitted pulse. In our analysis we considered A ¼ 1
(unit energy pulse) and 0p|C/A|p1. The worst case is
when |C/A| ¼ 1; this value characterizes two synchronized
radars using the same code. The best case is when |C/
A| ¼ 0; this value characterizes the case of synchronized
radars using two orthogonal codes.

In Fig. 3, we report the RMSE(yT) of the PM estimator as
a function of the interference DOA, with aT�CN(0,sT

2|A|2)
and aI�CN(0,sI

2|C|2). In Fig. 4, we report the bias of the PM
estimator in the same scenario. The bias of the estimator
increases with |C/A| and the RMSE gets values close to the
40% of the beamwidth. The behavior of both RMSE and
bias are almost symmetric with respect to the position of
the target yT. When yI ¼ yT, the bias due to the presence of
7 With this value of SNR the probability of detection of the filter

matched to the transmitted signal is almost unitary, even for PFA ¼ 10�6.
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Fig. 11. RMSE vs. interference DOA, yT ¼ 1.51, SNR ¼ 20 dB, SIR ¼ 0 dB,

N ¼ 16, deterministic a and b, ML estimator.
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Fig. 12. Bias vs. interference DOA, yT ¼ 1.51, SNR ¼ 20 dB, SIR ¼ 0 dB,

N ¼ 16, deterministic a and b, ML estimator.
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the interfering radar is null and the RMSEðŷTÞ for |C/A| ¼ 1
is lower than that for |C/A| ¼ 0.

Similar remarks can be drawn from Figs. 5 and 6,
where we report RMSEðŷTÞ and bias for deterministic
unknown aT and aI. For small |C/A|, the RMSEðŷTÞ of the PM
estimator is lower when the target and interference
amplitudes are deterministic than when they are complex
Gaussian random variables. Conversely, the RMSEðŷTÞ

is more sensitive to high values of |C/A| ¼ 0 when
the amplitudes are deterministic than when they are
random.

In Figs. 7 and 8, RMSEðŷTÞ is shown as a function of the
ratio |C/A| for different value of the SIR, in the case of
random and deterministic amplitudes, respectively. The
interference DOA yI has been generated as a random
variable uniformly distributed on the range [�71,�71].8

The impact of the interference is apparent in both
figures.

Figs. 9–14 report the companion results for the ML
estimator. The behavior is very similar. In the case of
deterministic amplitudes the ML estimator outperforms
the PM estimator; the contrary in the random amplitude
scenario. It is worth reminding that in the case of random
amplitude, what in this paper is termed ‘‘ML estimator’’ is
not the true ML estimator (for details see [7]).

4. Cramér-Rao lower bounds and
performance comparison

To complete our analysis we derived also the CRLB for
the two cases at hand. In this section we report results and
comments. Detailed derivation of the bounds is presented
in Appendices A and B.

When the observed vector y is complex Gaussian
distributed with mean value ly and covariance matrix Cy,
in short y�CN(ly,Cy), with unknown real parameters
v ¼ [w1,w2,ywn]T, the elements of the Fisher matrix are
given by [8]

½JðvÞ�i;j ¼ Tr C�1
y ðwÞ

qCyðvÞ
qwi

C�1
y ðvÞ

qCyðwÞ
qwj

( )

þ 2<e
qlH

y ðvÞ
qwi

C�1
y ðvÞ

qlyðvÞ
qwj

( )
, (12)

where Tr{ � } is the trace of a matrix, <e{ � } stands for the
real part and i,j ¼ 1,2,y,n.

4.1. Deterministic amplitudes

In this case Cy ¼ sd
2I and ly ¼ aA � g(yT)+bC �h(yI).

Decomposing the complex amplitudes a and b in their
modulus an phase, that is a ¼ aejj and b ¼ bejc, the vector
of the real parameters to estimate is v ¼ [yT a j yI b c]T.
The 36 elements of the Fisher matrix are reported in
Appendix A.

As verified in Eq. (A.28), the CRLB of the target
parameters yT, a, and j do not depend on the ratio |C/A|.
8 These are the angular positions of the nulls of first right and left

sidelobes of the sum channel.
This means that, theoretically, if the radar knows that an
interference is present, it is possible to find an efficient
unbiased estimator that is not sensitive to the code used
by both reference and interfering radars. Unfortunately,
this never happens. In the existing systems, the radar
simply applies some techniques for the estimation of
target DOA even when there is an interference, then the
presence of an interfering radar biases the estimates
increasing the root mean square error more than one
order of magnitude with respect to the CRLB, as shown
in Fig. 15. In Fig. 15, we report the square root of
the Cramér-Rao lower bound (RCRLB) of yT in degrees,
RCRLBðyTÞ ¼ ð180�=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBðyTÞ

p
, compared to the

RMSE(yT) of ML and PM estimators for |C/A| ¼ 0 and |C/
A| ¼ 1, as a function of the interference DOA. The solid line
with white squares (labelled RCRLB) represents the
RCRLB(yT) calculated when all the target and interference
parameters are deterministic and unknown. The dotted
θI (degrees)

Fig. 16. RMSE of ML and PM estimators and RCRLB vs. interference DOA,

yT ¼ 1.51, random a and b.
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line with white circles (labelled RCRLBwi) reports
the RCRLB(yT) calculated when the interference is not
present (Eq. (A.29)). It should not seem to be an
absurd that for some values of yI, the RMSE(yT) is smaller
than the RCRLB(yT), because both ML and PM estimators
are biased.

4.2. Random amplitudes

The comparisons in the case of complex Gaussian
distributed amplitudes are summarized in Fig. 16. Again,
the solid line with white squares (labelled RCRLB@|C/
A| ¼ 1) represents the RCRLB(yT) calculated when both
target and interference DOAs are unknown and |C/A| ¼ 1.
The dotted line with white circles (labelled RCRLBwi)
reports the RCRLB(yT) calculated when the interference is
not present (Eq. (B.3)). The two curves are close, meaning
that also in this case, knowing the presence of the
interference, it could be possible to find an estimator that
is not too sensitive to the values of |C/A|. Unfortunately,
also in the case of random amplitude, the performance of
realistic estimators as the PM and ML are far from the
CRLB and the impact of the codes is heavy.

5. Conclusions

The aim of this paper is to highlight that the proper use
of codes is of paramount importance even in a very simple
radar network formed by two radars. The impact of the
presence of a radar on the other has been measured in the
estimation of the target DOA performed by the reference
radar. We considered only two multi-pulses algorithms,
the ML and the PM, among all the DOA estimation
techniques (see for instance [9–12], and references there-
in) not with the purpose of finding the best algorithm in
the presence of an interference, but simply willing to
show that two very different techniques suffer the same
performance impoverishment. We verified that the inter-
ference mainly introduces a bias in the DOA estimate that
depends on the position of the interference with respect
to the boresight of the antenna and on the ratio |C/A|, that
is, on the choice of the codes. For limiting this negative
effect, the code should be chosen such that |C/A|o1, that is
the codes used by the two radars should be almost
orthogonal. This is not always an easy task. Generally the
code is designed for optimizing the frequency and range
resolutions of the radar, that is, for optimally shaping the
AAF. But often the best-shaped auto-ambiguity corre-
sponds to a very poor CAF, that is, in our problem, high
value of |C/A|. Some asymptotic bounds on CAF of different
classes of frequency hop-coded signals have been reported
in [3,13–15]. For Welch–Costas code of length N the bound
is N/N then |C/A| can easily get the unit value. For codes
based upon linear congruences the bound is 2/N, then the
maximum value of |C/A| is 0.5. Good results can be
obtained with a set of the codes based upon extended
quadratic congruences for which the asymptotic bound
seems to be 12/N. The adaptive use of different trans-
mitted waveforms to alleviate the impact of an inter-
ference is now under analysis [16].
Appendix A. CRLB derivation for
deterministic amplitudes

First, let us define some useful vectors and matrices

_gðyÞ ¼
qgðyÞ
qy

; _hðyÞ ¼
qhðyÞ
qy

(A.1)

and

GðyÞ ¼ gðyÞgHðyÞ ¼ gðyÞgTðyÞ; HðyÞ ¼ hðyÞhH
ðyÞ ¼ hðyÞhT

ðyÞ,

(A.2)

_GðyÞ ¼
qGðyÞ
qy

; _HðyÞ ¼
qHðyÞ
qy

, (A.3)

where the n,mth element of the matrix is ½ _GðyÞ�n;m ¼
½ _gðyÞ�n½gðyÞ�m þ ½gðyÞ�n½ _gðyÞ�m, and ½ _HðyÞ�n;m ¼ ½ _hðyÞ�n½hðyÞ�m
þ½hðyÞ�n½ _hðyÞ�m.

In the case of deterministic amplitudes Eq. (12)
reduces to

½JðvÞ�i;j ¼
2

s2
d

<e
qlH

y ðvÞ
qwi

qlyðvÞ
qwj

( )
; i; j ¼ 1;2; . . .6. (A.4)

Knowing that ly ¼ aejjA � g(yT)+bejcC �h(yI), we can
calculate

qlyðvÞ
qv

¼

aejjA _gðyTÞ

ejjAgðyTÞ

jaejjAgðyTÞ

bejcC _hðyIÞ

ejcChðyIÞ

jbejcChðyIÞ

2
6666666664

3
7777777775

. (A.5)

Setting now g ¼ |C/A|, A ¼ jAjejWA and C ¼ jCjejWC ¼

gjAjejWC , we obtain for the Fisher matrix elements

J11 ¼
2

s2
d

a2jAj2jj _gðyTÞjj
2, (A.6)

J12 ¼ J21 ¼
2

s2
d

ajAj2 _gT
ðyTÞgðyTÞ, (A.7)

J13 ¼ J31 ¼ 0, (A.8)

J14 ¼ J41 ¼
2

s2
d

abgjAj2 cos ðWC � WA þ c�jÞ _gT
ðyTÞ

_hðyIÞ,

(A.9)

J15 ¼ J51 ¼
2

s2
d

agjAj2 cos ðWC � WA þ c�jÞ _gT
ðyTÞhðyIÞ,

(A.10)

J16 ¼ J61 ¼ �
2

s2
d

abgjAj2 sin ðWC � WA þc�jÞ _gT
ðyTÞhðyIÞ,

(A.11)

J22 ¼
2

s2
d

jAj2jjgðyTÞjj
2, (A.12)

J23 ¼ J32 ¼ 0, (A.13)
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J24 ¼ J42 ¼
2

s2
d

bgjAj2 cos ðWC � WA þ c�jÞgTðyTÞ
_hðyIÞ,

(A.14)

J25 ¼ J52 ¼
2

s2
d

gjAj2 cos ðWC � WA þ c�jÞgTðyTÞhðyIÞ,

(A.15)

J26 ¼ J62 ¼ �
2

s2
d

bgjAj2 sin ðWC � WA þ c�jÞgTðyTÞhðyIÞ,

(A.16)

J33 ¼
2

s2
d

a2jAj2jjgðyTÞjj
2, (A.17)

J34 ¼ J43 ¼
2

s2
d

abgjAj2 sin ðWC � WA þc�jÞgTðyTÞ
_hðyIÞ,

(A.18)

J35 ¼ J53 ¼
2

s2
d

agjAj2 sin ðWC � WA þ c�jÞgTðyTÞhðyIÞ,

(A.19)

J36 ¼ J63 ¼
2

s2
d

abgjAj2 cos ðWC � WA þc�jÞgTðyTÞhðyIÞ,

(A.20)

J44 ¼
2

s2
d

b2g2jAj2jj _hðyIÞjj
2, (A.21)

J45 ¼ J54 ¼
2

s2
d

bg2jAj2 _h
T
ðyIÞhðyIÞ, (A.22)

J46 ¼ J64 ¼ 0, (A.23)

J55 ¼
2

s2
d

g2jAj2jjhðyIÞjj
2, (A.24)

J56 ¼ J65 ¼ 0, (A.25)

J66 ¼
2

s2
d

b2g2jAj2jjhðWIÞjj
2. (A.26)

Based on Eqs. (A.6)–(A.26), we can observe that the
Fisher matrix can be written as

J ¼
A gB

gBT g2C

" #
, (A.27)

where A, B and C are three-dimensional sub-matrices.
Then, the inverse of J can be expressed as

J�1
¼

D E

F G

" #
¼

ðA� BC�1BT
Þ
�1

� 1
g ðA� BC�1BT

Þ
�1BC�1

� 1
g ðC� BTA�1BÞ�1BA�1 1

g2 ðC� BTA�1BÞ�1

2
64

3
75.

(A.28)

It is worth noting that the sub-matrix D does not
depend on g, then the CRLB of yT, a, and j do not depend
on g. Conversely, the bounds of the interference para-
meters are inversely proportional to g2.

If the interference is not present, the CRLB of yT, a, and
j can be calculated simply inverting the matrix A. After
some algebra we get

CRLBðyTÞ ¼ ½J
�1
�1;1

¼
1

2SNR

jjgðyTÞjj
2

jj _gðyTÞjj
2jjgðyTÞjj

2 � _gT
ðyTÞgðyTÞgTðyTÞ _gðyTÞ

.

(A.29)
Appendix B. CRLB derivation for complex Gaussian
distributed amplitudes

In this case, supposing aACN(0,sa2) and bACN(0,sb2),
the observed vector is still Gaussian with a mean
value ly ¼ E{y} ¼ 0 and a covariance matrix Cy ¼

sa2|A|2G(yT)+sb2|C|2H(yI)+sd
2I. The unknown parameter

vector is w ¼ ½ yT yI �
T and (12) reduces to

½JðvÞ�i;j ¼ Tr C�1
y ðvÞ

qCyðvÞ
qwi

C�1
y ðvÞ

qCyðvÞ
qwj

( )
; i; j ¼ 1;2.

(B.1)

It is easy to verify that

qCy

qw1

¼
qCy

qyT
¼ s2

ajAj
2 _GðyTÞ

and

qCy

qw2

¼
qCy

qyI
¼ s2

bjCj
2 _HðyIÞ. (B.2)

Replacing (B.2) in (B.1) and inverting the Fisher matrix
we can obtain the CRLB.

If the interference is not present, the Cramér-Rao
bound of yT, can be easily calculated inverting [J]1,1. After
some algebra

CRLBðyTÞ

¼
1

SNR

1

Trf½ðI� ðSNR � GðyTÞ=1þ SNR � gTðyTÞgðyTÞÞÞ �
_GðWTÞ�

2g
.

(B.3)
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